10/26/2016 syllabus

EEL 4783: HDL in Digital System Design

Course:

Spring 2016. 3 credits.

Lectures: TTH 4:30-5:45PM @ HEC-0103

Instructor Office Hours: TTH 10:00AM~1:30PM and 2:45PM-4:30PM @ HEC 416

Course Instructor:

Mingjie Lin

Office: HEC 416, Telephone: 407-882-2298

Email: mingjie@eecs.ucf.edu, Home Page: http://www.eecs.ucf.edu/~mingjie

TA: Mohammed Alawad <aljobory3000@yahoo.com>

Course Description:

This course provides a systematic introduction to the topic of HDL programming for designing embedded digital system. It emphasizes the basic ideas, and the practical aspects of HDL programming with FPGA devices. In addition, this course presents techniques for modeling hardware components at different levels of abstraction and many concepts including the various forms of expressing computations, sequential and parallel implementations, control-flow and data-flow, control dependency and data dependency, latency and throughput as well as the architecture design space of hardware data paths, finite state machines. Specific topics include:

- Basic concepts of HDL
- Veilog language and its usage.
- How to use Verilog to design large-scale and complicated digital systems.
- Identifying performance bottlenecks in a given hardware architecture and optimize it by transformations on hardware components
- How to use logic simulation to analyze and verity a HDL design.

Prerequisites:

EEL 3342: Digital Logic Design

Minimally Required Skills:

Basic logic design and basic software programming skills.

Recommended Text:

"Advanced Digital Design with the Verilog HDL" (2nd Edition) Hardcover – January 31, 2010 by Michael D. Ciletti

Grading:

The distribution of weights for the exams, assignments, and projects is as follows:

Midterm Exam	30%
Final Exam	20%
Final Project	25%
Assignments	25%

Students are encouraged to participate in class.

10/26/2016 syllabus

Honor System Policy:

Consultation with fellow students is encouraged, especially on design issues. However, directly copying another student's work defeats the purpose of the assignments and is an honor code violation. All written assignments should be original work. Portions of written work that are taken word-for-word from other authors (students or researchers) will be assigned a failing grade and may result in a failing grade in the course

Schedule (minor changes possible throughout the semester)

Event	Spring 2015	Topics	Notes	Assignments
Lecture 1		Introduction (Objectives, Expectations, Logistics)	<u>pdf</u>	
Lecture 2			<u>pdf</u>	
Lecture 3		Logic Design with Behavioral Models	<u>pdf</u>	
Lecture 4		Logic Design with Behavioral Models (cont.)	<u>pdf</u>	HW1, Solutions
Lecture 5		More Complex Behavioral Models	<u>pdf</u>	
Lecture 6		More Examples	<u>pdf</u>	HW2, Solutions
Lecture 7		Logic Synthesis	<u>pdf</u>	
Lecture 8		Logic Synthesis (cont.)	<u>pdf</u>	HW3. posted on webcourse
Lecture 9		Latch Synthesis	<u>pdf</u>	HW4, Solutions
Lecture 10		Flip-Flop Synthesis	<u>pdf</u>	
Lecture 11		Sequential Logic in Verilog	<u>pdf</u>	
Lecture 12		Revisit Sequential Logic	<u>pdf</u>	
Lecture 13		Midterm Review	<u>1, 2</u>	
Lecture 14		CORDIC Algorithm and Verilog Implementation	<u>pdf</u>	
Lecture 15		Logic Synthesis with Verilog	<u>pdf</u>	HW5 and solutions
Lecture 16		Floating Number	pdf	
Lecture 17		Microprocessor Design and inpolementation	<u>pdf</u>	midterm solutions
Lecture 18		Generate	<u>pdf</u>	
Lecture 19		Arith. Modules	<u>pdf</u>	

10/26/2016 syllabus

Lecture 20	Logic Verification	<u>pdf</u>	
Lecture 21	Verilog vs. VHDL	pdf	
	Final Review	pdf	

Thursday, April 28, 2016 4:00 PM — 6:50 PM		
--	--	--

Sample midterm 1, sols

Sample Midterm 2

Sample Final Solutions

Assignments and Projects:

1. Homework assignment will be weekly and programming project will be bi-weekly.

2. Final Project Files:

Project 1. CORDIC Implementation

Project 2. 8-Bit CPU