School of Computing and Information Sciences

Course Title: Introduction to Data Mining **Date:** 03/23/10

Course Number: CAP 4770

Number of Credits: 3

Subject Area: Computer Systems	Subject Area Coordinator: Masoud Sajadi
	email: sadjadi@cis.fiu.edu

Catalog Description:

Data mining applications, data preparation, data reduction and various data mining techniques such as association, clustering, classification, anomaly detection.

Textbook: Data Mining: Concepts and Techniques, 2nd Edition.

Jiawei Han and Micheline Kamber,

Morgan Kaufmann Publishers (ISBN: 1-55860-901-6)

References: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 2nd Edition.

Ian H. Witten and Eibe Frank

Morgan Kaufmann Publishers (ISBN: 0-12-088407-0)

Prerequisites Courses: COP 3530

Corequisites Courses: COP4540

Type: Set 1 Elective for CS Major

Prerequisites Topics:

- Fundamental data structures
- Basic database concepts
- Discrete math
- Programming languages

Course Outcomes:

- 1. Be familiar with the data mining process
- 2. Be familiar with various data mining applications
- 3. Be familiar with major data mining tasks and algorithms
- 4. Exposure to the principles and theoretical foundations behind major data mining approaches
- 5. Be able to undertake the systematic and comparative evaluation of data mining procedures
- 6. Demonstrate a basic understanding of selecting and applying data mining techniques to the solutions of real world problems

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	3,4
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1, 3, 4, 5,6
c) Demonstrate proficiency in problem solving and application of software engineering techniques	2,5,6
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	2,6
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: http://www.cis.fiu.edu/programs/undergrad/cs/assessment/

School of Computing and Information Sciences CAP 4770

Introduction to Data Mining

Outline

Topic Number of Outcome			
	r	Lecture Hours	
• Data	Mining Introduction	2	1,2,3,6
0	What is data mining		, , ,
0	Data mining functionalities		
0	Data mining applications		
0	Data mining systems		
• Data	a Preparation	5	1,6
0	Descriptive data summarization		,
0	Data cleaning		
0	Data integration and transformation		
0	Data reduction		
0	Data discretization and concept		
	hierarchy generation		
• Data	Warehouse and OLAP	3	1,2,4
0	Data warehouse introduction		
0	Multidimensional data model		
0	Data cube and OLAP		
• Freq	uent Pattern Mining	8	3,4,5,6
0	Basic concepts		
0	Efficient and scalable frequent		
	itemset mining methods		
0	Correlation analysis		
0	Sequential pattern mining		
0	Graph and tree mining		
• Clas	sification and Prediction	10	3,4,5,6
0	Decision tree induction		
0	Bayesian classification		
0	Support vector machines		
0	Nearest neighbor methods		
0	Other classification methods		
0	Ensemble methods		
0	Performance evaluation		
	stering Analysis	6	3,4,5,6
0	Partitioning methods		
0	Hierarchical methods		
0	Density-based methods		
0	Outlier analysis		
• Adv	anced topics and applications	3	2,3,4,6

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Association rule mining	3
	Outcome:1,2,3,5,6	
2	Classification	3
	Outcomes: 1,2,3,5,6	
3	Clustering	3
	Outcomes: 1,2,3,5,6	

Oral and Written Communication

No significant coverage

Written Reports		Oral Presentations	
Number	Approx. Number	Number	Approx. Time for
Required	of pages	Required	each
3	5	0	0

Social and Ethical Implications of Computing Topics

No significant coverage

Topic	Class time	student performance measures

Approximate number of credit hours devoted to fundamental CS topics

Fundamental CS Area	Core Hours	Advanced Hours
Algorithms:		3.0
Software Design:		
Computer Organization and Architecture:		
Data Structures:		
Concepts of Programming Languages		

Theoretical Contents

Topic	Class time
Statistics, Information	2.0
theory, and Liner algebra	

Problem Analysis Experiences

1. Data mining application: Identify a problem that would be amenable to data mining

Solution Design Experiences

Association rule mining
Classification
Clustering analysis

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture Hours
IM2	Database systems	1
IM3	Data modeling	2
DS6	Discrete probability	1
IM10	Data Mining	35

6

¹See http://www.computer.org/education/cc2001/final/chapter05.htm for a description of Computer Science Knowledge units